Dynamics and Molecular Determinants of Cytoplasmic Lipid Droplet Clustering and Dispersion
نویسندگان
چکیده
Perilipin-1 (Plin1), a prominent cytoplasmic lipid droplet (CLD) binding phosphoprotein and key physiological regulator of triglyceride storage and lipolysis in adipocytes, is thought to regulate the fragmentation and dispersion of CLD that occurs in response to β-adrenergic activation of adenylate cyclase. Here we investigate the dynamics and molecular determinants of these processes using cell lines stably expressing recombinant forms of Plin1 and/or other members of the perilipin family. Plin1 and a C-terminal CLD-binding fragment of Plin1 (Plin1CT) induced formation of single dense CLD clusters near the microtubule organizing center, whereas neither an N-terminal CLD-binding fragment of Plin1, nor Plin2 or Plin3 induced clustering. Clustered CLD coated by Plin1, or Plin1CT, dispersed in response to isoproterenol, or other agents that activate adenylate cyclase, in a process inhibited by the protein kinase A inhibitor, H89, and blocked by microtubule disruption. Isoproterenol-stimulated phosphorylation of CLD-associated Plin1 on serine 492 preceded their dispersion, and live cell imaging showed that cluster dispersion involved initial fragmentation of tight clusters into multiple smaller clusters, which then fragmented into well-dispersed individual CLD. siRNA knockdown of the cortical actin binding protein, moesin, induced disaggregation of tight clusters into multiple smaller clusters, and inhibited the reaggregation of dispersed CLD into tight clusters. Together these data suggest that the clustering and dispersion processes involve a complex orchestration of phosphorylation-dependent, microtubule-dependent and independent, and microfilament dependent steps.
منابع مشابه
Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets
Macroautophagy is an intracellular degradation system by which cytoplasmic materials are enclosed by the autophagosome and delivered to the lysosome. Autophagosome formation is considered to take place on the endoplasmic reticulum and involves functions of autophagy-related (Atg) proteins. Here, we report the identification and characterization of mammalian Atg2 homologues Atg2A and Atg2B. Simu...
متن کاملMolecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers
Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...
متن کاملSpatiotemporal dynamics of triglyceride storage in unilocular adipocytes
The spatiotemporal dynamics of triglyceride (TG) storage in unilocular adipocytes are not well understood. Here we applied ex vivo technology to study trafficking and metabolism of fluorescent fatty acids in adipose tissue explants. Live imaging revealed multiple cytoplasmic nodules surrounding the large central lipid droplet (cLD) of unilocular adipocytes. Each cytoplasmic nodule harbors a ser...
متن کاملMonoubiquitination of Ancient Ubiquitous Protein 1 Promotes Lipid Droplet Clustering
Lipid droplets, the intracellular storage organelles for neutral lipids, exist in a wide range of sizes and of morphologically distinct organization, from loosely dispersed lipid droplets to tightly packed lipid droplet clusters. We show that the lipid droplet protein AUP1 induces cluster formation. A fraction of AUP1 is monoubiquitinated at various lysine residues. This process depends on its ...
متن کاملSimulation of nanodroplet impact on a solid surface
A novel computational fluid dynamics and molecular kinetic theory (CFD-MK) method was developed to simulate the impingement of a nanodroplet onto a solid surface. A numerical solution of the Navier–Stokes equation using a volume-of-fluid (VOF) technique was used to model nanodroplet deformation. Dynamic contact angle during droplet impact was obtained by molecular kinetic theory. This dynamic c...
متن کامل